1,478 research outputs found

    Color Screening and Quark-Quark Interactions in Finite Temperature QCD

    Get PDF
    We analyze the screening of static diquark sources in 2-flavor QCD and compare results with the screening of static quark-antiquark pairs. We show that a two quark system in a fixed color representations is screened at short distances like a single quark source in the same color representation whereas at large distances the two quarks are screened independently. At high temperatures we observe that the relative strength of the interaction in diquark and quark-antiquark systems, respectively, obeys Casimir scaling. We use this result to examine the possible existence of heavy quark-quark bound states in the high temperature phase of QCD. We find support for the existence of bbbb states up to about 2Tc2T_c while cccc states are unlikely to be formed above TcT_c.Comment: 8 pages, 6 figure

    Importance of second-order piezoelectric effects in zincblende semiconductors

    Full text link
    We show that the piezoelectric effect that describes the emergence of an electric field in response to a crystal deformation in III-V semiconductors such as GaAs and InAs has strong contributions from second-order effects that have been neglected so far. We calculate the second-order piezoelectric tensors using density functional theory and obtain the piezoelectric field for [111]-oriented Inx_xGa1−x_{1-x}As quantum wells of realistic dimensions and concentration xx. We find that the linear and the quadratic piezoelectric coefficients have the opposite effect on the field, and for large strains the quadratic terms even dominate. Thus, the piezoelectric field turns out to be a rare example of a physical quantity for which the first- and second-order contributions are of comparable magnitude.Comment: 4 pages, 3 figures, Submitted to Phys. Rev. Let

    Secular Trends on Birth Parameters, Growth, and Pubertal Timing in Girls with Turner Syndrome.

    Get PDF
    BACKGROUND: Whether children with chromosomal disorders of growth and puberty are affected by secular trends (STs) as observed in the general population remains unanswered, but this question has relevance for expectations of spontaneous development and treatment responses. OBJECTIVES: The aim of the study was to evaluate STs in birth parameters, growth, and pubertal development in girls with Turner syndrome (TS). STUDY DESIGN: Retrospective analysis of KIGS data (Pfizer International Growth Database). We included all TS patients who entered KIGS between 1987 and 2012 and were born from 1975 to 2004, who were prepubertal and growth treatment naïve at first entry (total number: 7,219). Pretreatment height and ages at the start of treatment were compared across 5-year birth year groups, with subgroup analyses stratified by induced or spontaneous puberty start. RESULTS: We observed significant STs across the birth year groups for birth weight [+0.18 SD score (SDS), p < 0.001], pretreatment height at mean age 8 years (+0.73 SDS, p < 0.001), height at the start of growth hormone (GH) therapy (+0.38 SDS, p < 0.001) and start of puberty (+0.42 SDS, p < 0.001). Spontaneous puberty onset increased from 15 to 30% (p < 0.001). Mean age at the start of GH treatment decreased from 10.8 to 7.4 years (-3.4 years; p < 0.001), and substantial declines were seen in ages at onset of spontaneous and induced puberty (-2.0 years; p < 0.001) and menarche (-2.1 years; p < 0.001). CONCLUSION: Environmental changes leading to increased height and earlier and also more common, spontaneous puberty are applicable in TS as in normal girls. In addition, greater awareness for TS may underlie trends to earlier start of GH therapy and induction of puberty at a more physiological age

    Fatigue analysis-based numerical design of stamping tools made of cast iron

    Get PDF
    This work concerns stress and fatigue analysis of stamping tools made of cast iron with an essentially pearlitic matrix and containing foundry defects. Our approach consists at first, in coupling the stamping numerical processing simulations and structure analysis in order to improve the tool stiffness geometry for minimizing the stress state and optimizing their fatigue lifetime. The method consists in simulating the stamping process by considering the tool as a perfect rigid body. The estimated contact pressure is then used as boundary condition for FEM structure loading analysis of the tool. The result of this analysis is compared with the critical stress limit depending on the automotive model. The acceptance of this test allows calculating the fatigue lifetime of the critical zone by using the S–N curve of corresponding load ratio. If the prescribed tool life requirements are not satisfied, then the critical region of the tool is redesigned and the whole simulation procedures are reactivated. This method is applied for a cast iron EN-GJS-600-3. The stress-failure (S–N) curves for this material is determined at room temperature under push pull loading with different load ratios R0σmin/σmax0−2, R0−1 and R00.1. The effects of the foundry defects are determined by SEM observations of crack initiation sites. Their presence in tested specimens is associated with a reduction of fatigue lifetime by a factor of 2. However, the effect of the load ratio is more important

    Electron g-Factor Anisotropy in Symmetric (110)-oriented GaAs Quantum Wells

    Get PDF
    We demonstrate by spin quantum beat spectroscopy that in undoped symmetric (110)-oriented GaAs/AlGaAs single quantum wells even a symmetric spatial envelope wavefunction gives rise to an asymmetric in-plane electron Land\'e-g-factor. The anisotropy is neither a direct consequence of the asymmetric in-plane Dresselhaus splitting nor of the asymmetric Zeeman splitting of the hole bands but is a pure higher order effect that exists as well for diamond type lattices. The measurements for various well widths are very well described within 14 x 14 band k.p theory and illustrate that the electron spin is an excellent meter variable to map out the internal -otherwise hidden- symmetries in two dimensional systems. Fourth order perturbation theory yields an analytical expression for the strength of the g-factor anisotropy, providing a qualitative understanding of the observed effects
    • 

    corecore